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Summary Report

WL/MLBM solicited Phase I SBIR proposals to develop a capability for 3D
boundary element analysis for composite joints with discrete damage.
Fracture Analysis Consultants, Inc. (FAC), with its extensive experience
with boundary element technology and existing boundary element
software, responded to the solicitation, and was granted a six month
contract to demonstrate the feasibility of such a system.

Our overall goal for was to demonstrate expertise in BEM methods
appropriate to the detailed stress analysis of arbitrary bolted or bonded
composite joints containing cracks and contact surfaces. There were three
tasks in the Phase I workstatement. All three have been completed:

Task 1. We augmented the Galerkin-based, 2D, orthotropic BEM program
developed for the original program solicitation to include
hypersingular BEM traction equations so that a symmetric
coefficient matrix could be formulated. We believe that this
orthotropic symmetric-Galerkin code is unique.

Task 2. Using the code developed in Task 1, we solved an example
laminate problem [Pagano 1978], to show that the symmetric-
Galerkin (SG) approach can yield accurate interlaminar stress
predictions near free surfaces.

Task 3. We demonstrated a capability to perform 3D contact analysis
using our existing 3D BEM program. The approach is a penalty
function technique derived from a current capabilities for fluid
driven fracture, and can also be used for the proposed Phase II 3D
simulation system.

In addition to these tasks, considerable resources were spent on three
additional tasks that further our goal of demonstrating expertise, and are
preparatory for a potential Phase II effort.

Task 4. We have added fracture analysis capabilities to the 2D SG code of
Task 1. We believe that this is the first SG fracture formulation
for elasto-statics, and certainly the first for orthotropic materials.

Task 5. We have developed software to evaluate the 3D anisotropic
Green's function. This is a generalization of the work of Sales and
Gray [1996]. In this approach residue calculus is used to
transform the Green's function to a ratio of polynomials. A
symbolic algebra program is used to generate polynomial
coefficients. Newton's method is used to find the roots of the
polynomial. Our implementation can handle multiple orthotropic
materials; no precomputations are required.
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Task 6. We have developed a fully 3D Galerkin BEM program. Coding for
this program has been completed, we are currently in the testing
and debugging phase. This code includes linear and quadratic
order elements, and has been interfaced with our FRANC3D
program that we use to generate models, meshes, and boundary
conditions.

In summary, we have successfully completed the work tasks specified in
our proposal. In addition, we have gone substantially beyond the original
Phase I objectives towards creating a capability for state-of-the-art 3D
boundary element analysis of composite joints with discrete damage.

1. Introduction and Background

WL/MLBM is developing improved capability for detailed stress analysis of
composite bolted and bonded joints. Such joints are crucial to the success
of composite structures because they are sites for initiation of a variety of
damage types, and contribute substantially to weight and to design and
manufacturing resources.

Geometry changes, ply drops, and free-edges common to such joints create
stress concentrations [Pagano, 1978] and theoretical stress singularities
[Wang & Crossman, 1977] which render simple lamination theory
inapplicable. A mathematical model whose characteristic dimension is
lamina thickness is required to approach these problems [Chamis, 1989].
Although there have been some successful solution techniques based on
more rigorous analytical approaches at this scale, these are restricted in
applicability because they lack the geometrical and boundary condition
generality of numerical methods such as the finite element method (FEM).

However, there has been a historical difficulty in using the FEM for
detailed stress analysis of laminates. This is because of the intrinsic
difficulty with the FEM of simultaneously satisfying displacement and
traction compatibility across lamina interfaces while also providing the
strain discontinuity as required by the orthotropic constitutive laws of the
lamina materials [Bogdanovich, 1992].

The boundary element method (BEM) appears to be an attractive
alternative numerical approach for this application because it
automatically satisfies displacement and traction compatibility across
lamina interfaces while naturally reproducing the required strain
discontinuity.

WL/MLBM solicited SBIR proposals for the development of a 3D BEM
capability both to compare with in-house variational methods of solution,
and to improve efficiency and applicability. Fracture Analysis
Consultants, Inc. (FAC), with its extensive experience with boundary
element technology and existing boundary element software, responded to
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the solicitation, and was granted a six month Phase I contract to
demonstrate the feasibility of such a system. This is the final report for
this Phase I effort.

1.1 Phase I Technical Objectives

The overall goal of Phase I is to demonstrate expertise in BEM methods
appropriate to the detailed stress analysis of arbitrary bolted or bonded
composite joints containing cracks and contact surfaces.

Technical objectives outlined in the proposal were:

Objective 1: Modification of a new Galerkin 2D BEM code to generalized
plane strain and to symmetric formulation so that we can solve the
specified test problem referenced in the solicitation [Pagano, 1978]. This
will demonstrate the feasibility of the symmetric Galerkin boundary
element formulation.

Objective 2: Produce a fully 3D solution to the test problem. This would
then enable comparisons for accuracy and efficiency to the predictions
produced from Objective 1.

Objective 3: Modify FRANC3D (our current boundary element analysis
system) to enable solution of contact stress problems. This will allow us to
analyze arbitrary bolted or bonded composite joints containing contact
surfaces.

Objectives 1 and 3 have been fully realized. Objective 2 has been only
partially fulfilled. Our original intention for Objective 2 was to modify our
existing, collocation-based finite element code to include anisotropic
material capabilities. However, during the course of the project we decided
that it would be more useful in the long run to develop a new 3D Galerkin
formulation boundary element code (see the next three sections for
definitions of these terms). We have developed this new capability, but
because this effort was more than that of the original obective 2, we have
not yet been able to perform a fully 3D solution of the test problem.

A detailed description of the results of all tasks associated with these
objectives is provided in Section 2. As noted there, even though objective 2
had been only partialy fullfilled, all tasks have been completed, along with
a number of additional tasks not in the original workstatement. First,
however, we provide a brief background on boundary element formulations
and computational fracture analysis therewith. These sections proved a
technical context for the remainder of the report.
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1.2 Boundary Element Formulations

Conventionally, the boundary element is formulated as a collocation
procedure. That is, the governing equation

y (P)+ [T, (P.Q) Q) dQ = [U,, 7,0V d0 (1-1)

is forced to be satisfied at some number of nodal points, on the boundary.
The equation is not necessarily satisfied away from these points. While P
is a point, the integration is performed over a surface element . This is
shown pictorially in Figure 1-1a. The integration is relatively
straightforward, except for the cases where the P node is adjacent to the @
element. As the traction and displacement kernels, U and T, contain
factors of 1/r and (q,-p,)/r®, respectively (g, and p, being the Cartesian
coordinates of the source and field points), these integrations become
singular, and special care must be taken in their evaluation. Techniques
for this are well known, and can be found in any number of standard BEM
textbooks [e.g., Brebbia and Dominguez, 1989].

While the collocation technique forces the governing equations to be
satisfied at a finite number of points, the finite element technique has been
very successful using the Galerkin form of the method of weighted
residuals. In this approach, the governing equations are not satisfied at
individual points, but rather in an average sense over an element's
domain. This approach can be applied to boundary elements [Maier and
Polizzotto 1987] but requires two integrations, one each over the P and @
elements.

Symbolically, the Galerkin governing equations are

[v. P (PYdP + [y, (P T, (P.O) u,(0) dQdP

(1-2)
= [w.(P)[U,,,7;(Q dodP

where y are the shape functions of the P element. This is shown in Figure
1-1b.

There are at least five advantages of the Galerkin formulation:

1. The technique to yields much more accurate internal stresses and
displacements close to the boundaries than does the collocation
approach. Such stresses and displacements are notoriously bad with
collocation giving rise to the so-called "boundary effect”. In essence,
since the governing equations are satisfied only at nodal points,
evaluating stresses or displacements at points near the boundary can
give rise to significant errors. The recommendation is to not trust
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values evaluated closer to the boundary than the local characteristic
nodal spacing.

. Q surface
X Q surface X element
P node element
5 X, P surface
% (@) X element (b)

Figure 1-1. a) normal collocation boundary element integration, b)
Galerkin boundary element integration.

Such restrictions on evaluating stresses and displacements are quite
severe in the present case where we are concerned with inter-laminar
stresses, and stress fields in near crack-tip regions. Therefore, the
Galerkin formulation seems superior for these cases.

2. The technique gives one the ability to rigorously treat hypersingular
equations using standard continuous elements, collocation requiring a
differentiable approximation (this is discussed further below).

3. A more accurate treatment of corners, especially for corners having
displacement boundary conditions and corners having no boundary
conditions. This is important for bi-material interface problems and
potentially for coupling BEM domains to FEM domains.

4. In conjunction with the hypersingular boundary element equations, a
symmetric coefficient matrix can be formulated, giving rise to
significant decreases in necessary storage and processing time.

5. A symmetric formulation give the possibility to couple boundary
elements with finite elements and still maintain the symmetric FEM
coefficient. matrix.

1.3 Boundary Elements and Fracture Mechanics.

A naive application of boundary element techniques to fracture mechanics
fails. This is illustrated in Figure 1-2a. Nodes i and j, while being on
distinct surfaces, are geometrically coincident. This means that the
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boundary element equations for these two points will be identical, leading
to a rank deficient coefficient matrix.

The remedy for this situation has been to break the object into two
separate domains by way of a fictitious boundary [Rizzo and Shippy 1968,
Cruse 1969, Blanford, Ingraffea, and Liggett 1981]. Separate boundary
element coefficient matrices are formulated for the two domains, and
equilibrium and compatibility is enforced along the boundary. This is
illustrated in Figure 1-2b.

domain I

fictitious boundaries

ﬁdéi/ / / e
node j Lo \
crack domain I~ °TF
(a) (b)

Figure 1-2. a) a naive application of boundary elements to a fracture
mechanics problem, b) the multi-domain approach.

The multi-domain approach has been shown to be unsatisfactory for at
least two reasons. First, while for two dimensional problems defining a
suitable fictitious boundary is usually straightforward, doing the same for
an arbitrary three-dimensional configuration can be quite difficult.

Second, this approach adds additional surfaces in the crack tip region. As
mentioned above, while the governing equations are satisfied exactly in
the interior of the domain, they are only approximately satisfied near the
boundaries. The multi-domain approach therefore places additional
approximations in the crack-tip region, where stress gradients are
expected to be the highest, and where usually, the most accurate results
are desired.

Gray and his associates have taken a different approach to the crack
problem, where the redundant crack face equations are replaced with
equations for the known (usually zero) stress conditions on the crack faces
[Gray 1989, Gray, Martha, and Ingraffea 1990, Lutz, Gray, and Ingraffea
1991, Martha et. al. 1992, Gray 1993].

In his approach, Eq. (1-1) is differentiated with respect to P to yield the
following equation for the tractions,

T (P)+ [ S, (P.Q)u;(Q)dQ = [W,, ,(P,0)7,(0)d0 (1-3)

which can be substituted for the redundant crack-face equations.




The S and W kernels of Eq. (1-3) contain first and second derivatives of the
Green's function, and thus lead to so-called hypersingular equations.
Gray has shown how these can be evaluated accurately by decomposing
the integrals into the non-singular parts, integrated numerically, and
simple singular parts, evaluated analytically.

The field of hypersingular boundary integral equations has opened
possibilities for new solutions to various problems by the BEM [see, for
example, the review article by Krishnasamy, Rizzo, and Rudolphi 1992].
There are a number of hypersingular approaches, and each approach has
been developed independently by several groups: e.g. Bonnet and Bui
[1993], Crouch and Selcuk [1992], Cruse [1988], Chang and Mear [1995],
Gray, Martha, and Ingraffea [1990], Guimarédes and Telles [1994], Hong
and Chen [1988], and Paulino [1995]. Although successful, the common
problem for these methods is that, when employed in conjunction with a
collocation approximation, a C' continuous smoothness constraint is
necessarily imposed on the boundary in the neighborhood of the
integration point. This condition adds considerable complexity and/or cost
to fracture analyses. Historically, we have satisfied this condition by
moving the collocation points from the element nodal points to points on
the interior of the elements, with the corresponding cost of significantly
larger system of equations.

However, if Eq. (1-3) is evaluated with a Galerkin formulation, the
resulting equation,

[vi(P) 1. (PYdP+ [, (P)[ S,1;(P.Q)u;(Q) dOdP

(1-4)
= .[Wk(P)JWkkJJ(P’Q)T”(Q)deP

can be evaluated with only C’ continuity between elements.

1.4 A Symmetric Galerkin Formulation

The key to obtaining a symmetric coefficient matrix are the properties of
the kernel functions [Sirtori et. al. 1992],

up.0)=UQ,P)

T(P,Q)=-T(Q,P)
W(P,0)=W(Q,P)
S(P,Q)=-S(Q,P)

(1-5)

combined with a Galerkin approximation, and appropriate selection of
equations for each degree of freedom. The displacement equation (1-2) is
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used for all degrees of freedom where displacements are specified, and the
traction equation (1-4) is used for the remaining degrees of freedom where
tractions are specified. After discretization, the resulting set of equations
can be written in the following block matrix notation,

[Hll le]{uk}=[611 GIZ]{ru} (1-6)
H, Hy |(u, G, Gu]l%

where the k and u subscripts represent, respectively, the known and
unknown components of the displacement and traction vectors.

Rearranging Eq. 1-6 into the form [AJ(x} = (b}, and multiplying the second
row (hypersingular equations) by -1, one obtains,

[—Gll H,, ]{Tu} _ {_Hnuk + GIZTk} (1-7)
G, Hy]lu Hyu, - Gy,T,

u

The symmetry of the coefficient matrix, G,, =G}, H,, = H,, and H,, =G},
now follows from the properties of the kernel functions, Eq. (1-5).

2. Workstatement Tasks

There were three tasks in the proposed work statement of this project. The
first two were aimed at demonstrating that a symmetric Galerkin
boundary element formulation would work, and are continuations of the
analysis included in our Phase I proposal. The third task was looking
forward to potential Phase II work, and was to investigate the possibility of
incorporating contact analysis into a 3D boundary element analysis. All
three tasks have been completed.

2.1 Task 1 - Creation of a 2D Symmetric Galerkin Code

The program solicitation for this project requested that all proposals
contain a plane strain, thermal-mechanical analysis of a [0°/90°]s
laminate subjected to a uniform temperature change of -100°F. At the
time of the solicitation, we had no two-dimensional BEM capabilities
(while we did have three-dimensional capabilities). Therefore, we
developed a new two-dimensional code for the purpose of responding to the
solicitation.

This new code was a Galerkin formulation, but not symmetric. That is, it
used the displacement equation (1-2) but did not incorporate the traction
equation (1-4). We proposed, as Task I, to augment our 2D code to
incorporate a symmetric formulation, and to include capabilities for
generalized plane strain.
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A symmetric formulation has been implemented. There is essentially no
difference in computed results between the symmetric and unsymmetric
results. The time to formulate elements is essentially the same for the two
programs, while the solution time for the symmetric case is approximately
one half that of the unsymmetric version.

The generalized plane strain capability is a near trivial extension of the
way we implemented thermo-mechanical loading. Assume that the plane
of analysis is the y-z plane. Given the full three dimensional constitutive
relationships,

6,] [Cu C; Gy 0O 0 0] (€, ]
o, C, C, Cy 0 0 0 ]¢
o, C, Cy C; 0 0 O0]le,
) [ |13 v T ﬁ [ (2-1)
Ty 0 0 0 C, O 0|7y
Ty 0 0 0 0 Cs O ||V
7. L0 0 0 0 0 Cgxll7)]
and the initial strain vector due to a constant temperature change,
[, AT AT oAT 0 0 O (2-2)
the expression for the in-plane stresses is
Cn Cs 0 |lg Cn, Cs 0 |fa, C,
L r—|Cy Cy 0 Ko, pAT —3C510, AT . (2-3)

O-y
0,0=|Cs Cy 0 | E
T, 0 0 Cil{?y 0 0 Ckxl|lO 0

In our code, the body stress terms

o1 aferiel

== AT - o, AT (2-4)
{Gz Cs Cyulle, Cis

are added to account for the thermal strains. A similar approach can be
taken for generalized plane strain. However, in this case the body stress

terms are
6y _ C,
{6:2} - {C13}£x’ (2-5)

which is numerically the same expression as 2-4 with ¢, =a, =0, and
e, =aAT.

10
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2.2 Task II - Solution of a Test Problem

To demonstrate the capabilities added in Task I, a problem originally
examined by Pagano [1978] was reanalyzed as Task II. The problem is the
[0°/90°]s laminate subjected to a uniform x strain, as shown in Figure 2-1.

Z A

4

Figure 2-1. A [0°/90°]s laminate subjected to uniform strain in the x -
direction.

The laminate is modeled using generalized plane strain, and only one
quarter of the cross-section was modeled, as shown in Figure 2-2.

Z
6 .
b/h=8 T [0°/90°]s laminate E,; =20 x10"psi
3 y  E,,=E;=21x10%psi
h —>  G,=G,=G,,=0.85x10°psi
j= - >| Vi, =V;=V,;=0.21

Figure 2-2. The quarter symmetry model and material properties for the
test problem.

The computed inter-lamina stress distributions along the 0°/90° interface
are shown in Figures 2-3 and 2-4 (these are directly comparable to Figures
7 and 8 of the Pagano paper).

As can be seen in Figure 2-3, there is very good correlation between our
computed normal stress distribution and that reported by Pagano (note,
the Pagano results plotted here were determined graphically from the
figures in the paper and thus are only approximate).

11




The comparison for the shear stresses is not quite as good. As shown in
Figure 2-4, the present analysis predicts higher peak shear stresses than
the reference analysis. We have not investigated the effect of mesh
refinement.
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Figure 2-3. Comparison of the normal inter-lamina stresses for the
present analysis and that of Pagano [1978].
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Figure 2-4. Comparison of the shear inter-lamina stresses for the present
analysis and that of Pagano [1978].
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2.3 Task ITI - 3D BEM Contact Analyses

An ultimate objective of this project is to develop a detailed analysis
capability for mechanically fastened joints in composite materials. In

such a joint, bearing stresses from bolts play a major role in the load
transfer through the joint, and must be modeled properly in a detailed
local stress analysis. Such an analysis must include elastic deformation of
the bolt and evaluation of contact zones. In the Phase I effort, we have
demonstrated this capability as a straightforward technology transfer
from our current coupled fluid/structure interaction [Sousa et al, 1993]
and non-linear cohesive fracture capabilities [Bittencourt and Ingraffea,
1995].

An important application of our current boundary element program is the
analysis of fluid driven fracture (hydraulic fracture). In this case,
cracking is driven by pressurized, non-Newtonian fluids inside the crack.
This is a highly nonlinear, coupled fluid/structure interaction problem.
The nonlinearity arises because the flow in the crack is a cubic function of
the crack opening. The solid, however, remains linear and elastic in
behavior.

We sclve this problem by using the boundary element program to generate
a flexibility matrix for the crack surface, which relates the displacement
at any point of the crack surface to a load at any other point on the surface.
In essence, this is using the boundary element program to create a super
element. Once the flexibility matrix has been generated, we use a
nonlinear solution algorithm for solving the fluid-structure interaction
equations. The important point here is that, at each iteration in the
solution, we only need to perform a matrix multiply to incorporate the
effects of the solid in the solution.

We have adapted our fluid/structure interaction capabilities,
incorporating a penalty function approach, for solving contact problems.
The general contact problem has been modeled in 3D using FRANC3D
[Wawrzynek 1991] and our existing BEM program, BES. The contact
surface is modeled as two distinct surfaces that share the same geometric
description. These surfaces are meshed with the same surface mesh.
Multiple solutions are obtained during the solution process; one
corresponds to the far field applied loading, while the others correspond to
unit tractions applied to each node pair on the contact surface. This
provides a set of influence coefficients that can be used to determine the
equilibrium displacements and tractions due to unit tractions applied to
the contact surfaces.

An iterative scheme is used to determine the equilibrium tractions on the
contact surface. The algorithm is summarized below:

13




F33615-96-C-5070 SBIR Topic AF96-150: Phase I Final Report

1. Assume that all tractions are zero on the contact surface, and the
amount of overlap due to the far field loading is determined;

2. At the node where maximum overlap occurs, a traction is applied. The
traction is computed by comparing the displacements between the node
pair on the contact surfaces for the cases of applied far field loading and
a unit traction on the node pair (unit tractions are applied in the
opposite sense to the two nodes);

3. Based on the ratio of the displacements and a numerical damping
(relaxation) factor, a traction value is computed and applied to the node
pair;

4. The solution for the far field loading is then superimposed with the
solution for the applied traction on the contact surface assuming linear
elasticity;

5. The total displacement and traction field is then recomputed;

6. A search is made again for the node pair with the maximum overlap,
and the process is repeated, summing up all solutions for all non-zero
tractions and computing new displacements and tractions at each
iteration.

As an example, a model similar to that analyzed by Yogeswaren and Reddy
[1988] was considered. It should, however, be emphasized that while
Yogeswaren and Reddy performed plane strain calculations, the present
analysis is a fully three-dimensional treatment. They were modeling
experiments performed by Joh [1986]. The model consists of an isotropic
aluminum plate with a hole and pin. The pin is fixed and tension is
applied to the plate. The model, material parameters and loading are
shown in Figure 2-5. Appropriate restraints are applied to prevent rigid
body motion. The plate and pin are 0.06" thick. Friction on the contact
surface is not modeled. Yogeswaren and Reddy modeled a clearance fit pin
with 0.005" between the pin and the hole, and they included friction on the
contact surfaces; both a static and dynamic coefficient of friction were
used. In the present analysis, a slip-fit was assumed, and fictional effects
were ignored.

For the first case analyzed, the pin has the same material properties as the
plate. The displacements due to far field loading alone are shown in Figure
2-6a and the actual displacements after accounting for contact are shown
in Figure 2-6b. Normal tractions on the contact surface are shown in
Figure 2-7. Zero degrees corresponds to position A in Figure 2-5. The
minimum traction (maximum compression) exists at about 65 degrees.
This is also indicated by the color contour plot of minimum principal stress
(Figure 2-8).
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Figure 2-5. Model, material parameters and loading.

(a) (b)

Figure 2-6. (a) displaced shape due to far field loading only, and (b)
displaced shaped after accounting for contact.
Magnification factor is 100.
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Figure 2-7 Contact normal traction results for the aluminum pin.
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Figure 2-8. Color contours of the minimum principal stress also shows
that the maximum compressive contact stresses are at about 65 degrees.
Magnification factor is 100.

The minimum value of normal traction are substanitally less than the
experimental experimental values reported Joh (about -35 ksi). It is
unclear from the Yogeswaren and Reddy paper whether the reported load
value of 1210 lbs. was the total load applied to the experiments, or the total
load applied to their finite element mesh, which models one half of the
experiment. In retrospect, it appears that the later is the case, while we
assumed that the reported load was the total experimental load, and only
applied 605 lbs. to our half symmetry analysis. Furthermore, Rao [1978]
has shown that the amount of clearance and friction can significantly
effect the contact stress distribution and location of separation. Therefore,
direct comparisons between our analysis and the experiments by Joh
cannot be made.

A second model was analyzed with a stiffer "steel” pin (E=30,000 ksi). The
normal traction on the contact surface for this model is shown in Figure 2-
9. The trend of the curve is similar to the aluminum pin, although the
minimum is shifted to about 60 degrees.

In both cases, the minimum normal traction on the contact surface is not
at position A (0 degrees), because the pin is close to the fixed end of the
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plate. A third model was created by extending the plate 3" to the left,
leaving the pin much further from the fixed end. The steel pin was used in
this model. The normal traction on the contact surface for this model
(Figure 2-9) shows that the normal traction is almost constant from 0 to
about 60 degrees after which it decays to zero.
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Figure 2-9. Contact normal stress for an aluminum pin, steel pin,
and a steel pin with an extended plate.

3. Additional Tasks not in the Workstatement

There were three tasks not in the workstatement of our Phase I proposal
for which we spent a considerable amount of effort during the course of
this project. In fact, these efforts represent the majority of our effort.

First, we extended our two-dimension symmetric-Galerkin BEM code to
include single domain fracture analysis, for orthotropic materials. Second,
in anticipation of three-dimensional developments, we formulated an
efficient technique for evaluating 3D anisotropic Green's functions.
Finally, we have formulated and implemented a three-dimensional
anisotropic Galerkin (but not yet symmetric) BEM code.

3.1 2D Symmetric Galerkin Fracture Mechanics

A symmetric Galerkin algorithm for fracture, in the context of two-
dimensional potential theory, was recently presented by Gray,
Balakrishna, and Kane [1995]. This method, effectively a combination of
displacement discontinuity [Crouch and Starfield 1983] and the
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hypersingular BEM [e.g., Gray 1990] ideas, employs the hypersingular
equation on the crack surface as described above in Section 1.3. For the
present project, we have explored techniques to improve the computational
efficiency, and have extended the approach to plane orthotropic elasto-
statics. Some of this work has been presented in Gray and Paulino [1996].

3.1.1 Formulation

Consider a 2D, linear-elastic, orthotropic body which contains a crack, as
illustrated in Figure 3-1. The body has a boundary I'=T,+I +I, +T,
which represents, respectively, the portion of the boundary over which
displacements are specified, tractions are specified, and the two sides of
the crack (over which the tractions are assumed to be known).

Wy

/
Z {
7 .
; n” r
] L
“ /v
Z o
7
; — ru
///////////////////

Figure 3-1 A generic body containing a crack.

In the hypersingular approach to solving fracture problems described in
Section 1.3, independent equations for solving for the displacements on
both sides of the crack are obtained by writing both standard and
hypersingular equations. This violates the symmetric-Galerkin
procedure, as the boundary condition on the crack surfaces are assumed to
be specified tractions and, consequently, only the traction equation should
be used. Symmetry of the coefficient matrix is therefore not possible with
the hypersingular approach. Nevertheless, taking this as a starting point,
the resulting system of equations can be written in block-matrix form,

H, H,, H,l|[Q G, G, G,||¥
H, H, Hyu[u =G,y G, GyKT,¢- (3-1)
H, H,, Hy]|lu G, Gy Gyull|7,

The blocking strategy, according to Eq. (3-1), is as follows: the first row
and column is associated with the outer, non-crack boundary I, +I’;, while
subscripts 2 and 3 refer to the two sides of the crack I'” and I,
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respectively. The vector of unknowns on the outer boundary is, in general,
a mixture of displacements and tractions, and is denoted by Q,. The
corresponding vector of prescribed boundary values is indicated by ¥,.
The second and third rows correspond to the equations for traction and
displacement, respectively, written on the crack surface (again, it assumed
that the traction is specified on the crack surface).

Note that, although the coefficient matrix in Eq. (3-1) is not symmetric, the
upper 2 x 2 principal submatrix is, i.e. H, =H,|, H,, = Hy,, and H, =H,,.
This is a consequence of the basic symmetric-Galerkin procedure, the
traction being the appropriate equation choice on the crack. In addition to
the symmetry, it is also important to observe that H, =-H,, and H, =-H,,
a consequence of the change in surface orientation in the integration over
the two sides of the crack. It can be shown that a symmetric coefficient
matrix results from changing variables on the crack from displacement to
the jump in displacement (i.e., displacement discontinuity),

Au=u, -u, (3-2)
Su=u,+u,

With this transformation, the left hand side of Eq. (3-1) takes the form

Hll H12 O QI
H, H, 0 [Aug, (3-3)
H, H,, I/2||Zu

where I is the identity matrix. It therefore suffices to solve the smaller
symmetric 2 x 2 block system for the unknowns {€,,Au}. If necessary, Zu,
and hence the actual crack face displacements can be calculated in a post-
processing step.

3.1.2 Example Problems

Two examples are presented to validate the 2D, orthotropic, symmetric-
Galerkin fracture capability. Each of these examples involves a single
interior crack, one aligned with the material axes (Figure 3-2a) and one
inclined at a 45° to the axes (Figure 3-2b). For both examples, plane stress
conditions are assumed. The crack has length 2a = 0.4, the plate has
height 2H = 2.0 and width 2W = 1.0. A remote traction of 10.0 MPa was
applied. The elastic constants used, which correspond to average
homogenized properties for fiberglass, are [Ghandi 1972]:

E, =48.26 GPa
E, =17.24 GPa
H,, = 6.89 GPa
v, =0.291
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The boundary element results for these examples are compared to finite
element solutions from the program FRANC2D [Wawrzynek 1991, Boone,
Wawrzynek, and Ingraffeal987]. The parameter chosen for comparison
purposes is the displacement discontinuity Au along the crack.

10 MPa 10 MPa

AAM AR AR A

45°

2H

L
E

1

(a) )
/S (/777777777
< 2W > e 2W —>

Figure 3-2. The two example problems used to validate the 2D, symmetric-
Galerkin boundary element capability.

The finite element solutions used approximately 270 quadratic order
elements with about 1560 degrees-of-freedom. Quarter-point elements are
used to model the stress singularity at the crack tips.

For the boundary element solutions, the outer boundary of the plate has
been uniformly discretized with 60 standard linear elements. Each face of
the crack has been discretized with 8 linear boundary elements, with some
grading towards finer elements towards the crack tip. Such
discretization, especially of the crack faces, is much too coarse to expect
highly accurate results, especially in the crack tip region where
displacement gradients are high. However, it was felt that if meaningful
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comparisons to the FEM results could be made, this would be sufficient to
validate the approach.

Table 3-1 shows the results for the crack opening displacement (COD) for
the crack of example 1. Because of symmetry, only the results for the left
portion of the crack are computed. The COD's obtained by both the BEM
and FEM analyses are in reasonably good agreement, the largest
discrepancy being less than 5%. For this problem, the crack sliding
displacement (CSD) should be zero. The numerical values for both BEM
and FEM are of the order 10® or less, indicating that consistent solutions
have been obtained.

Table 3-1. Crack opening displacement for Example 1. The solution is for
one half of the crack starting at the left crack tip.

SG-BEM FEM difference
X y Au, (x107) Au, (x107%) %
0.300 1.000 | 0.000000 | 0.000000 0.00
0.325 1.000 | 0.227131 | 0.230606 1.51
0.500 1.000 | 0.391940 | 0.411062 4.65
0.450 1.000 | 0.439092 | 0.460448 4.64
0.500 1.000 | 0.453433 | 0.476836 491

Table 3-2 shows the results for the displacement discontinuity for the

entire lenght of the crack of example 2. As before, the results for Au

obtained by both the BEM and FEM are in reasonable agreement, the
largest discrepancy being about 5%. However, the results for Au, show
much larger relative discrepancies, especially for the nodes near the crack
tips. It is quite likely that for this case neither the BEM or FEM solutions
are converged. However, for the present purposes, these analyses
demonstrate that our extensions of the symmetric Galerkin boundary
element formulation for fracture problems is valid.

Table 3-2. The displacement discontinuities for Example 2.

21

BEM FEM

y Au, (x107) | Au,(x107) | Au, (x107) | Au, (x107°) | Au, (%) | Au,(%)
0.359}0.859| 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00 0.00
0.376]0.876| -.049903 | 0.163476 | -.065051 | 0.164245 | 23.29 | 0.47
0.429] 0.929| -.105063 | 0.283705 | -.113276 | 0.298861 | 7.25 5.07
0.465]0.965| -.125796 | 0.318479 | -.139346 | 0.334257 | 9.72 4.72
0.500{ 1.000| -.132743 | 0.329145 | -.145958 | 0.345614 | 9.05 4.77
-.125730 | 0.318613 | -.139309 | 0.334217 | 9.75 4.67

-.104960 | 0.283939 | -.113400 | 0.298794 | 7.44 4.97
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[0.624] 1.124] -.049838 | 0.163708 | -.064930 | 0.164171
0.641]1.141| 0.000000 | 0.000000 | 0.000000 | 0.000000

3.2 Effective Evaluation of the 3D Anisotropic Green's Function
3.2.1 Formulation

A necessary component of a practical program for performing 3D BEM
stress analysis for orthotropic materials is a routine for efficiently
evaluating the anisotropic Green's function. This function, which can be
stated as:

UGy =, K@ ds@ =, (3-4)

where the Christoffel matrix, K, is defined in terms of the elastic
constants, C, of the material,

Kij = lzciljmélgm , and, r= "x - y" (3-5)

The integration path is the unit circle in the plane that is perpendicular to
the vector x -y,

S'=S'(y)={EeRI|g=1& (x-y)=0}. (3-6)

Formulation of BEM equations requires numerous Green's function
evaluations, and thus direct numerical quadrature is simply too
computationally expensive.

Previously, the best available algorithm has been the method proposed by
Wilson and Cruse, [1978]. In their approach, reasonable computation time
was obtained by employing cubic interpolation with tabulated
precalculated values. This method has three potential shortcomings.
First, storage requirements can become significant, especially if first and
second derivatives of the Green's function are required (such as for
evaluation of hypersingular equations used for fracture mechanics).
Second, as noted in Schclar [1994], accuracy may be a concern, as the
variation in the function values for a highly anisotropic material is likely
to be significantly larger than for a mildly anisotropic solid, and thus the
number of precalulated points needed to maintain accuracy is a function of
the anisotropy of the material. Third, the precalculated points are
material specific. The precalculation process must be performed, and the
resulting tables must be maintained, for each material of interest.
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For this project we decided to implement the residue calculus technique
for evaluating the function described by Sales and Gray [1996]. This
approach gives us the obvious benefit of the direct participation of one of
the authors, access to the software developed for the paper, and capability
to develop a subroutine that would work for all orthotropic materials with
no precalculations or storage of tables required. The residue approach has
also been exploited by Wang [1995]; however, this paper is primarily
theoretical, and does not focus on computations.

Following Sales and Gray, the contour integral above is written as
~ ¥x 1
0@w)=[ K€, 3-7)

where § is written parametrically as

&@® sin(@)cos(¥) + cos(@) cos(y)sin()
&) =] &,(t) | =| —cos(B)cos(t) + sin(8) cos(y) sin(t) (3-8)
& @) —sin(y)sin(¢)
The integration can be performed using residue calculus by transforming
the integrand into a rational function and expanding the range of the
integral to include all real numbers. As shown by Dederichs and Leibfried
[1969], this can be done with the substitution
Z =tan(z). (3-9)

With this substitution,  can be written as

&= cos(t)s(Z), (3-10)
where
sin(8) + Z cos(@) cos(y)
$(Z) =] —cos(6) + Zsin(B)cos(y) | . (3-11)
~Zsin(y)

Since the elements of £ are linear functions of Z, and K is a quadratic
function of &, the elements of K are second order polynomials in Z. Thus,
by Cramer's rule, the elements of K'! are rational functions of Z,

K -_kl = ! Rik @) ’
% cos’(t) Q(2)

(3-12)

where P and @ are polynomials of Z,
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P(2)= iajk,z‘, (3-13)
1=0
6
02)=Y bZ' (3-14)
1=0

With the observation that 1/cos®(t) = dZ/dt, the Green's function can be
written in the form

=2 é*((zz)) (3-15)
_4m21;e.zzzd)u(e;_ ;,é;((ZZ)) (3-16)
_j @ ;:QQ)(Z) - ©-1D
= 2 é(“ (3-18)

where A,, A,, and A, represent the three roots of Q(Z) in the upper half of
the complex plane.

To evaluate the Green's function numerically using this technique is a
two step process. First, the three roots, A, are determined using Newton's
method. Second, Eq. 3-18 is evaluated.

The coefficients of P and @ (a;,, and b, in 3-13 and 3-14) are functions of the
components of K, and thus depend on the material constants. For
orthotropic materlals there are nine independent material constants
(€,15C195 --- Cg)- For the current project, the Maple V symbolic algebra
program was used to construct the K matrix symbolically in terms of the
nine material constants. The matrix was then symbolically inverted, and
expressions for the coefficients of P and @ were developed. While these
expressions are rather tedious, the Maple program is capable of
automatically generating FORTRAN code for their evaluation.

A similar technique can be used to determine first and second derivatives
of the Green's function. This process is detailed in the paper by Sales and
Gray, and will not be repeated here.

3.2.2 Testing

We have performed a series of tests to assess the correctness and accuracy
of the new software. For example, consider the evaluation of the
normalized Green's function along vectors lying in the a plane passing
through the y axis and making a 45° angle with the x and z axis, as shown
in Figure 3-3.
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We have evaluated the Green's function using both our software, and a
direct numerical integration using Simpson's rule (for 60 segments). A
plot of the relative percentage error for two of the components is shown in

Figure 3-4.
1 Y

4

Figure 3-3. Path for the evaluation of Green's function

As can be seen by this graph, the accuracy of this approach is very good,
with maximum errors less than 1/100th of a percent.
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Figure 3-4. Relative percent error for two components of
the Green's function
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3.3 Development of a 3D Symmetric Galerkin BEM Code

A substantial portion of the resources for this project were spent
developing a new, 3D, symmetric-Galerkin code and interfacing it with our
FRANC3D modeling/meshing/postprocessing system. This work is
forward-looking towards Phase II, where it is anticipated that the
symmetric-Galerkin formulation will provide an efficient boundary
element technique that can accurately determine stresses and
displacements near cracks and other boundaries.

3.3.1 Code Organization and Development

There are three major tasks that a BEM program is required to perform:
read input data and precompute heavily reused data, perform all element
integrations, and solve the resulting system of simultaneous equations.
The software in our new program is organized along these lines.

Read Input and Precompute Element Data

The subroutines that read the input file and precompute element
information are written in the C programming language. We feel that C
language's capacity for handling dynamic memory allocation and for
manipulating character based information makes it an ideal choice for
these routines. In particular, because of the dynamic memory
management the language provides, there is no need to "preset” limits on
the number of nodes, elements, and materials that the program can
handle. Such limits will be determined at runtime based on the available
resources.

With a view towards flexibility and computational efficiency, there are two
concepts that we exploit quite heavily in the code: generalized element
data, and precomputation of this data. By generalized element data we
mean that much of the information that one needs on an element basis has
been formulated in a manner that will work for all linear and quadratic
order elements. For example, one often needs to determine the Cartesian
coordinates for a point in an element given in parametric coordinates.

This is easily and conventionally done by using the element shape
functions to interpolate the element's nodal coordinates. That is,
symbolically,

nnodes

Xy= 2 N@v)x,, o=1.3. (3-19)
i=1

Computationally, this procedure becomes more involved. One must first
compute the values of the shape functions at the specified parametric
coordinates. These will be different and of different number for each type
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of element. This leads to case analyses illustrated in the following
FORTRAN code:

if (nnodes .eqg. 3) then
call T3_shape(u,v, shape)
else if (nnodes .eq. 4) then
call Q4_shape(u, v, shape)
else if

end ifo.
doj=1,3

coord(j) = 0.0
do i1 = 1,nnodes

this_node =
1 node_coords (j,connectivity (i, this_elem))
coord(j) = coord(j) + shape(i)*this_node
end do

end do

Such case analyses are undesirable for two reasons. First, if a new
element is added to the program (e.g., a new crack tip element), all such
case analyses must be found and modified. Second, such case analyses can
seriously hinder or defeat a compiler's effort to optimize, vectorize, or
parallelize the code.

In our code, this evaluation is generalized for all element types using the
expression,

X, = Ay, +ay,u+ay,y+au’+au+ayt +aulv+auy’, a=1.3.(3-20)

The corresponding FORTRAN code is thus,

u2 = u * u
V2 = Vv * v
uv = u * v
u2v = u2 * v
uv2 = u * v2
do 3 = 1,3
coord(j) = a(j,1) + a(3,2)*u + a(3j,3)*v +
1 a(j,4)*u2 + a(j,5)*uv + a(j,6)*v2 +
1 a(j,7)*u2v + a(j,8)*uv2
end do

It may appear that this computation would be expensive for the simpler
elements, where many of the a coefficients would be zero. Actually, if one
accounts for the computation of the shape function, and the loop and
conditional overhead, the latter is only slightly more expensive in terms of
operations for these elements, and significantly cheaper for the higher
order elements.
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This example is a simplification of the actual situation in the code. There
we need to be able to evaluate the coordinates for point in terms of a polar
expansion (p,60) about any location in the element. The resulting
expression is,

o = (8o + QUi+ Qg + a,0° + A uv + 0,V + ag U’y + v’ )+
Qo + Aol + Ay V + Ay + Ay UV + Ay Y )cos(e) +

Qs + A+ AV + Aygl® + Qg + eV )sin(e)

o5k + Apsv)c0s(0)sin(B) + |p* +

a

a4

[
I
(aam + Qyplh + ) C0s” (0) + (3-21)
(as
(

Aoy F Qgaghh + Aypev)sin® (6)
[(a,m)cos2 (6)sin(6) + (a3, )cos(B) sin (9)]p

There are two classes of precomputed data, those which are done for each
individual element, and those which are done for each element type.

The following data is precomputed in the program:
for each element

The Cartesian coordinates of all Gauss integration points,

The integration weights for all Gauss points,

The element normal for all Gauss points,

The coefficients needed to find the Cartesian coordinate for any location
in an element given the parametric coordinates of an origin point and
polar offsets from that origin (Eq. 3-21), and

5. The coefficients needed to evaluate the Jacobian at any location in an
element given the parametric coordinates of the point.

ki s

for each type of element

The parametric coordinates of the Gauss integration points,

The integration weights for all Gauss points,

The shape function values at all Gauss points,

The beginning and ending angle and the coefficients needed to find the

distance to the element edge, for a polar integration over the element

area, centered at each corner node,

5. The coefficients needed to find the values of the shape functions at any
location in the element given the parametric coordinates of an origin
point and polar offsets from that origin, and

6. The parametric coordinates of the corner nodes of the element.

b e
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By precomputing all this information, we have completely avoided any
case analysis inside any of the element integration routines.

Furthermore, since much of this information is heavily reused during the
integration process, we save the cost of recomputing the information every
time it is needed.

Element Integrations

Much of the program is devoted to computing element integrations. This
portion of the program is written in FORTRAN. FORTRAN is the
conventional programming language for such computationally intense
algorithms, and, in general, the best optimizing and parallelizing
compilers available are for FORTRAN code.

There are four different cases of element integrations depending on the
physical locations of the source and destination elements. These are
illustrated in Figure 3-5. In all cases the integrands involve 1/r or 1/
terms, leading to singular integrals in three of the four cases.

Most integrations are of the Disjoint type (Figure 3-5a). Thisis a
nonsingular integration. Coincident integrations (Figure 3-5b) occur
when the source and destination element are the same. This integral
becomes singular as the @ point approaches the P point. There are two
possible types of adjacent integrations. When the two elements share a
common edge (Figure 3-5¢) the integrand is singular along the entire
common edge. When the two elements share a common vertex (Figure 3-
5d) the integrand is singular only at this vertex,

Within the code, different computational strategies are employed for each
of the four cases. The approaches are summarized here and described in
detail in Appendix A.

Disjoint

This case is relatively straightforward and is handled with conventional
Gauss integration. The integrand contains products of the element shape
function values, Jacobean determinates, Gauss integration weights, and
appropriate kernel functions.

Coincident
The integrand in this case becomes singular as the source point
approaches the destination point. To handle this situation, the integrand

is decomposed into singular and nonsingular parts. If for each gauss point
a transformation is made to a polar coordinate system centered at the
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Gauss point, an analytical expression for the singular part of the
integrand can be found.

Disjoint

element

Coincident
element (b)

Edge

Adjacent Vertex

Adjacent

P element P element

(c) (d

Figure 3-5 The four possible configurations for element integrations.

The first step is to break the element into a number of triangles, T', , as
shown in Figure 3-6 (the description given here is for quadrilateral
elements, but works similarly for triangular elements). Within each
triangle, the integration over 0 is performed numerically (that is, discrete
angles and weights are chosen based on standard quadrature rules). The
integration over p, however is performed analytically. This process is
repeated for each of the Gauss integration points in the element.

Vertex Adjacent
The integrand in this case becomes singular at the common vertex. To

handle this situation, the integrand is again decomposed into singular and
nonsingular parts. Again, an analytical expression for the singular
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integral can be found for a polar coordinate system, in this case, centered
at the common vertex.

Figure 3-6 Coincident polar element integration.

This situation is illustrated in Figure 3-7. The @ element is decomposed
into two triangles, 7, and 7, (only one triangle is necessary for triangular
elements). Within each tnangle, the 1ntegrat10n over ¢, is performed
numerically. The integration over p,, is partly analytlc and partly
numerical.

Figure 3-7 Vertex adjacent element integration.

A polar coordinate system centered at the common vertex is used in the P
element also. However, in this case, both the 6, and p, integrations are
done numerically by using the standard Gauss 1ntegrat10n points and
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weights (and finding the appropriate 6, and p, that correspond to these
points).

Edge Adjacent

The edge adjacent case is similar to vertex adjacent, but now the
singularity is along the entire common edge. The integrand is again
decomposed into singular and nonsingular parts. In this case, however,
we use mixed coordinate systems.

As illustrated in Figure 3-8, a polar coordinate system is used for the @
element. The origin of the coordinate system is a point on the common
edge. This point is the projection of the P integration point onto this edge,
and thus moves for the different Gauss points in the P integration.

Vo

Figure 3-8. Edge adjacent element integration.

The @ element is decomposed into triangles, two for triangular element
and three for quadrilaterals. Within each triangle, the integration over v,
is performed numerically. The integration over p,_, is performed
analytically.

The P element integration is performed in a rectilinear coordinate system.
The integration for the u coordinate is performed numerically; however, an
analytical expression has been derived for the integration along the v
coordinate.
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Our algorithm for treating the edge adjacent case is a new development.
The resulting analytical expressions are complicated, but are easily
derived using symbolic computations.

Solving Systems of Equations

Once element integrations have been performed, the resulting system of
simultaneous linear equations must be solved. While this procedure is
computationally expensive, it is also well understood, and many linear
equation solves are available. Our intention is to not spend any more
effort on this part of the program than necessary.

For testing, where the coefficient matrix is small enough to be contained in
virtual memory without excessive thrashing, we are using the widely
available LINPAC solver.

When we start working with realistic problems, with correspondingly
larger coefficient matrices, we anticipate using the out-of-core BEM
optimized solver that we developed for our existing BEM program.

3.3.2 Integration with FRANC3D

We have modified the FRANC3D program to generate input files for the
new BEM code. This effort was more involved than originally anticipated
because the new code treats "corner” boundary conditions differently than
our existing BEM code.

In the new program, "ambiguous"” corner boundary conditions are treated
by duplicating the appropriate nodes. For each degree-of-freedom at each
node, either a traction or displacement can be specified, with the other
being an unknown. At corners, however, traction values are not
necessarily unique, leading to a possibility of more than one unknown at
the corners. If this is the case, we need to "duplicate” the node so that the
number of knowns matches the number of unknowns. Duplicating the
node affects the node list and the nodal connectivity table, thus
complicating input file generation.

This situation can be illustrated in 2D. Figure 3-9 shows (a) a corner and
(b) a non-corner configuration. First assume that the displacement at the
node is known. In case (b), where ni equals ng, t; equals ¢, we have one
unknown (traction) for our known (displacement). In case (a), however,
the normals and corresponding tractions will be different. Therefore, we
have two unknown (tractions) for one known (displacement). In this case
we must duplicate the node so that both tractions appear as unknowns in
the system.
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tx\ /t2 (a) (b)

oW

n
1\ u ;'2 elem 1 T elem 2
elem 1 elem 2 u

Figure 3-9. 2D corner and non-corner boundary condition configurations.

If, on the other hand, tractions are known at the corner, there are again
two possible cases. If the tractions are equal then we have one known and
one unknown. If, however, the tractions are not equal, there are two
knowns for one unknown, and we must duplicate the node.

The 3D case is a generalization of this 2D analysis, but is significantly
complicated by the fact that there may be any number of elements incident
at a node, each with their own known and unknown boundary condition
type and value. In the 3D case, the actual number of nodes created will be
between one and the number of incident elements.

To determine the number of actual nodes created in the input file for any
node location, the following general algorithm was developed:

1. Assume initially the worst case that one node will be generated for each
incident element. We generate a data structure for each such "use” of a
node, which contains the types of known and unknown boundary
conditions, the known boundary condition values, and the element's
normal.

2. Compare all possible combinations of node uses and determine which
node uses have equivalent knowns and unknowns, and can be grouped
together.

3. Two node uses are determined to be equivalent if they meet the
following criteria:

a. They both have the same types of known boundary conditions for
all three coordinate degrees of freedom.

b. If the tractions are known, then all three traction values must be
equal.

c. If the displacement is known, then the element normals must be
equal.

4. One node is generated in the input file for each group of element uses,
and the appropriate element nodal connectivity is generated.
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The above algorithm has been implemented and tested within FRANC3D,
and appears to be working well.

The remainder of the BEM input file creation is a relatively straight
forward specification of nodal coordinates, element connectivity, material
properties, and boundary conditions. The only significant additional
consideration is the case of bi-material interfaces. For the elements on the
interface, the BEM code expects to see two elements in the input file, with
reversed nodal ordering (each ordering corresponds to an outward
pointing normal for the two materials) and differing material numbers.
This is easily handled by way of the FRANC3D internal data structures.

4. Summary and Conclusions

We have successfully completed a six month Phase I project to show the
feasibility of developing a 3D boundary element analysis system for
composite joints with discrete damage. Our overall goal for Phase I was to
demonstrate expertise in BEM methods appropriate to the detailed stress
analysis of arbitrary bolted or bonded composite joints containing cracks
and contact surfaces.

We have completed all three tasks in the Phase I workstatement:

¢ We augmented the Galerkin-based, 2D, orthotropic BEM program
developed for the original program solicitation to include hypersingular
BEM traction equations so that a symmetric coefficient matrix could be
formulated. We believe that this orthotropic symmetric-Galerkin code
is unique.

* Using the code developed in Task 1, we solved an example laminate
problem [Pagano 1978], to show that the symmetric-Galerkin (SG)
approach can yield accurate interlaminar stress predictions near free
surfaces.

¢ We demonstrated a capability to perform 3D contact analysis using our
existing 3D BEM program. The approach is a penalty function
technique derived from a current capabilities for fluid driven fracture,
and can also be used for the proposed Phase II 3D simulation system.

In addition to these tasks, considerable resources were spent on three
additional tasks that further our goal of demonstrating expertise, and are
preparatory for a potential Phase II effort.

* We have added fracture analysis capabilities to the 2D SG code of Task

1. We believe that this is the first SG fracture for elasto-statics, and
certainly the first for orthotropic materials.
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¢ We have developed software to evaluate the 3D anisotropic Green's
function. This is a generalization of the work of Sales and Gray [1996].
In this approach residue calculus is used to transform the Green's
function to a ratio of polynomials. A symbolic algebra program is used
to generate polynomial coefficients. Newton's method is used to find the
roots of the polynomial. Our implementation can handle multiple
orthotropic materials; no precomputations are required.

¢ We have developed a fully 3D Galerkin BEM program. Coding for this
program has been completed, we are currently in the testing and
debugging phase. This code includes linear and quadratic order
elements, and has been interfaced with our FRANC3D program that we
use to generate models, meshes, and boundary conditions.

In summary, we have successfully completed the work tasks specified in
our proposal. In addition, we have gone substantially beyond the original
Phase I objectives towards creating a capability for 3D boundary element
analysis of composite joints with discrete damage. We believe that we
have demonstrated that the symmetric-Galerkin BEM formulation is well
suited for this task, and that Fracture Analysis Consultants has the
expertise to pursue this objective.
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Appendix A - Details of the 3D SG-BEM Formulation
Symbols:

a; - coefficients of linear term of Taylor expansion of distance
between p and q, (j = 1..3)

a - RMS norm of the a vector

C - material constitutive matrix (6 x 6)

dU, ;. - matrix of derivatives of the traction kernel (kk = 1..3, jj = 1..3,
l1=1.3)

du,, ju - matrix of derivatives of the traction kernel for a truncated Taylor
expanion in polar coordinates (kk = 1..3, jj = 1.3, Il = 1..3)

E,,E, - elements for integration

Gy - normalized Green’s function (kk =1..3,jj = 1..3)

-~

G.; - truncated Taylor expansion of Gy

gp - Gauss point in P element

2q - Gauss point in Q element

] - jacobian determinant

|f| - truncated Taylor expansion of |J] in polar coordinates
L - distance from gauss point to element edge for element

singular polar integrations

P - integration source point

p; - integration source point Cartesian coordinates (jj = 1..3)

0 - integration field point

q; - integration field point Cartesian coordinates (jj = 1..3)

q; - field point coordintates for a truncated Taylor expansion of r in
polar coordinates (jj = 1..3)

r - distance between source and destination point

r - truncated Taylor expansion of r in polar coordinates

T - displacement kernel (k& =1..3, jj = 1..3)

T, P - truncated Taylor expansion of T, ; in polar coordinates

Us; - traction kernel (kk = 1..3, jj = 1..3)

Uy - displacement vector (kk = 1..3)

w - Gauss integration weight
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B: - polynomial coefficients for a polar expansion of the shape
functions (i = 0..3)

E; - vector of strain vectors (jj = 1..3)

£, - vector of strain vectors for truncated Taylor expansion in polar

coordinates (jj = 1..3)

Y; - polynomial coefficients for a polar expansion of r (i = 0..4)

o - vector of stress vectors (jj = 1..3)

3,.1. - vector of stress vectors for truncated Taylor expansion in polar
coordinates (jj = 1..3)

Ty - traction vector (k& = 1..3)

v, - shape function (¢ = 1..number of element nodes)

6 - angle for polar and sherical coordinates

¢ - angle for spherical coordinates

p - distance for polar coordinates

X< - p element parametric coordinates

ﬁ,E - q element parametric coordinates

Governing Equations:

The governing boundary element equation is

ty (P)+ [T (PO u;(Q) dQ = [U7,(0)dQ . 60
In terms of a Galerkin formulation, this can be rewritten as

[ve Py (PY+ [y (P T, ;(P.OYu; (@) dQ = [y, (P)[U,, 7, (@) 2)

with the traction kernel function defined, in terms of spherical
coordinates, as

1 =~
Ukkjj —mGﬁﬂ(ea‘P) (3)

The displacement kernel function, T, is derived from the derivative of U
with respect to the three coordinate directions,

duy, S

1 —p ~ 136G,..90 1G.. d
__qll 3pqukjj+_ Kk jj += kk jj ¢] (4)

8% r r 80 dq, r Jdp ag,
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from which can be formulated a strain vector

( E, ] du, it ]
Ey du, ii2
£ du, i3
E.={_%% = > . 5)
” 8;, ( 1 %(dUl_U,2 + dUZy,l) (
g, 1(dU, ;5 +dUs;,)
), |3(aUs;+duy,)

Using the constitutive relationship

6.=C...€ (6)

Ji 6x6 < jj

the displacement kernel can be defined,

6, 0, O,| [n

T.;=|0, O, O.| {1, (7)
0. 0, O, [ |n

Spherical coordinates are usually defined as follows:

(q‘ —D %P 4 —p3) = (cosBsin ¢,sin Bsin g,cos¢) (8

r r r
with 0<¢ <7, 0<0<2zm. In this case,
b _ gq-p 1 8 q-p 1 39=0 and ©)

d,  r* sin’¢’ &, r° sin’¢’ g,

99 _(a—p)cosp 3¢ _(g,-Pp,)cosg 3_¢__(ql—p1 0,-p, . )
3. 7 sing’ oq, 7 sng oq T cos19+——————r2 sin6 |. (10)

However, this gives rise to a singular point along the z axis. Therefore, in
cases where (g, - py)/r is > 0.7071, the following alternative spherical
coordinate system defintion is used,

(q, b HTP 9 —p3) = (cos¢,cos Bsin ¢,sin Bsin @), (11)
r r r

for which,
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ﬁ_o 0 __g-p 1 (99 _%-p_1

g, aq, R sin” ¢’ 8q3 2 sin’ ¢

3¢ ( —D,
=2 _"2c0s6 +
341 r’

, and (12)

ps 0) ¢ N ) cosf a¢ _%-Ds 0089 13
sin afIz r* sin@’ 9q3 "7 sin@ (13)

r

Single integral term

The single integral term can be evaluated numerically as follows,

[w. P, (PYdP = u, Y v, 2DV, (gp)\ (D)l wigp). (14)

Nonsingular integrals
Nonsingular integrals arise when elements P and @ have no nodes in

common. In this case both integrals can be evaluated numerically; the
traction integral being:

L, wk(P)qu Uy,;(P.Q)dP
= IE W, |dndE jE W, Uy ;/o|d7 dE

=Y v. (P (P (EP)Y, U (8P-89) ¥, (8o (e)|w(ga) (15)

G (ap.
2 M REL) TRCE) WO

= 8—3;2% (8P (gp)|w(gp)

and the displacement integral is

[, (P, T;(P.0)dQaP
1 - (16)
= 5;2% &P (eD)\wp (eD) Y. T (8P, 80V ;(89) W(gq)

Note that in this case, the @ element jacobian determinant is included in
the normal vector used to evaluate the displacement kernel, T Eq. (7).

Coincident Integrations
Coincident integrations occur when P and @ are the same element. In this
case the integrations are singular, so they are decomposed into a

nonsingular portion, solved numerically, and a singular portion, solved
analytically. In order to find a form of the singular integral that can be
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evaluated analytically, the normal area integration is transformed to a
polar integration centered at each of the elements gauss points.

To do this, define the @ gauss points as polar expansions about the P
points, which are located at the element's gauss integration points,

T=n+pcosh, and & =&+ psind. an
One can then define the vector from p to q in terms of p,
q,—D,=a,p+bp*+c,p’, a=123 (18)

r’=(a’ +a +a})p* +2(ab, +a,b, +ab)p’ +
(2a,c, + b} +2a,c, + b +2a,c, +b2)p* + (19)
2(byc, + byc, + bycy)p’ + (¢t +cE +ch)p°

or
rP=y,p* + 7,0’ +1,0° + 1.0’ +7.0°. (20)

If we look at the first term in this expansion,a = \/a? + @ +aZ , one can define

Zia =pa +aap’ (21)
F=ap,
(22)
|JQ| =|JQ|,,=0 =7,(1,8), (23)
= ={ a
Gkkjj = G(‘ai)’ (24)
3 _ 1| B-bu i laékkﬂ 90 laékkjj 99
AUy iu _871'2[ =3 Gkkjj"‘;_ 96 og, '*';_\ % o, ’ (25)
dl:jljj,l
qujj,Z
I Il (26)
5 =\ 4(d0,;, +d0,;,) [
3(d0, ;5 +d0;;,)
3(d0,;, +d0,;,)
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T=5i. (28)
Then, the traction integral becomes,

1 1~
o7 |, Ve (PP, v,(0)- Gy (P,0) dO
1 1= o
= oz J il olandgf ;= G| ami d
(29)

1 1=~
=57 LV V@l wen)], ;- GulJe| pdpds
1 1~ 12 s
= %‘,% Colv (gp)lw(gp)]Ee [w,- —~Guso| -7 Gu ﬁ|JQ|] pdpdo
1 12
+ o 2V @odwen), vz Gusllolpdpds

The first part is well behaved, and can be integrated numerically,
(30)

1 1=~ 12 (a4
— Y ¥, e (ep\wiep) Y. v;(8a) W(gq)p[— Guilo|~7Guso |]
87" 24 r r

and the second part is solved with a hybrid numeric/analytical approach.
Expanding the shape functions in terms of polar coordinates,
31)

y =B, + B, (@)p+B,0)p* + B,6)p’

then,
J.OL(G)W,-';I? G:H,jj| jgl pdp

A

-81—22;, v, (ep)|7, (ep)wiep) [ do

1 s 27[@ "
= sl el eptwien) [ 2L a8 "y, pdp
194
(32)

- 8%@2 > v (2p)|J, (2p)|wigp)
)L®) , BOL' (e)]
4

-~

Gy B.(O)*©6) . B,(6
%w(Ae) . [ﬁoL(9)+ > + 3

The displacement part is:
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1
[, VuPVP[, v, Q)T ;(P.0) dO
1 -
- WJE"“V pldndE | v T, \o| diia
1
= WZ""‘ (ep)|7+(gp)| w(gp)j% ¥ Tu;\o| pdpde (33)
8P
1 A s
=7 LV e)e (gp)lw(gp)f% [V Tsllol - ¥ sl pdp a0
&P
1 A "~
+ WZ% (ep)»(gp) W(g”)L,, V1 ,-,.Ilglp dpd6
&p
Again, the first part is well behaved, and can be integrated numerically,
1 A fa
— 2 Vi)l apIwisp) v (80 wep| oyl = Tusfe (39
s 2
The second part is solved with a hybrid numeric/analytical approach,
1 2 oLO) A |a
PN ACLACR D [d6] v uilio| pap
0

1 "~ ﬂ A
= <Pl vl eplwier) [d6f, T, pdp (35)
114

1 |- L(O) ~
e Z IR ACOIAC ) WG Ky AT
14 A8
where J'OL(G)TAMV/J. pdp 1is evaluated using symbolic computation.

Vertex Adjacent Integrations

When the two elements share one common node, the integration is said to
be "vertex adjacent”. For this case, the traction integral is:

e O] 9,076,700 a0

1 1=~ 1=
= _g;t—z—.“s V(P) dPJE [Wi ;Gkkfi -V; ?Gkkij]dQ (36)

~> | —

e IRAGL AR

The first, well behaved, part is integrated numerically,
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- Z%(gp)lf (gp)IW(gp)Zv', (gq)% (8P, 8|, (9| wiga)
- (37)
- WZ v o), e wiem) Y v, (gq)%ékk 5 (@p.2a)|J, (eq)|weq)

The second part is evaluated with a hybrid numerical/analytical approach,

A

G, .
Wk(pQ’OQ)__‘fJLpQ dp, db,

A

692 pLp(6p) (60)
j" J. V;(pp,0;) ppdp,dB,d0 j ee Vi (Pg,0p)—L ':ky Po Py

95, J'Lr (8p) 0(fg)

V,(05.8,) Prdp,d8, I A

0?2

oPl

Zw(ge e (26, )lzw(ge )88 AX wiepr)¥(8P1805) 1 X

8Pp

(38)

6,)
IQ R kfﬂ P dp,

G, .
with the analytical expressions forIOLQ(%)wk(pQ,GQ)—'f-”—pQ dp, being
r

determined using symbolic computations, the resulting expressions are
too long to be repeated here.

For the displacement integral,

-8_71?2-‘[15? Vi (P) dPIEQ Wj (Q)Tkk_u (P’ Q) dQ

(39)
1 . 1 R
= o S Ve PPy Ty v T )0 +— [ wiPyaP v T, 0
the first part is integrated numerically,
1
gz—;%(gp)lf,, (gp)IW(gp)g, ¥, (8T, ;8. 80)|7, (g9)|w(ga)
(40)

1 . ) )
-~ LV o), (@) w(en) Y, ¥; (8q) T ; (2P 8|7, (8 )| w(gg)

The second part is:
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Ly(6p)

1 9P2 LP (OP) 6, 2
I Vi (Pp, 6,) ppdp,do, L:l Jo

recd Vi(Pg60)Tus5 Po 4po 46,

0py £Og2 (Lp(6p) Lo (8,) A
J ’ I Wj(pP’eP)dedeGQdoPJ' o Vi(Pg:00) T Po 3P,

9?1 601

Zw(ge (20,2, w(g6,)), (g%)lzw(gpp)w,(gpp,gep)pp X

86p 80,

(41)

Lo (6p)
J- ’ V’k(pQ’eQ)Tkkjj PQ dPQ

0

with the analytical expressions for j u/k(pQ, Q)Tk,, i Podp, being
determined using symbolic computations.

Edge Adjacent Integrations

The traction integral for this case is the same as Eq. (x1). Again the first
part is evaluated numericaly. In this case, however, integration over the u
and v coordinates in the P element are done independently,

= ka(u 0], [¥/©3 6y P.0)-,@3 6y (P.0) a0
ZW(gu)Zv’k(gu g, (gu,gV)IW(gV)EW,(gq ¥

~Guusllo2a)|wize)

(42)
N 12 |-
—872w(gu)Zva(gmgv)lfp(gu,gv)|w(gv)2w,-(gq>;G,,k,-,-|JQ<gq)|w(gq)
8 i &q
The analytical part in this case is
! dvdu” )16, pdpdd
g&‘“‘l’j(u,v) v ujo. \ v/k(p, ); pdp
1 6, ¢ (L) 12
=7LL [, V)Y (0,6) Gy p dpdv 6y
(43)
1 A A
=27 W@ T el 3w(e0) [T (20)|x
8u 80

2 L@ p
Zw(gv)GkkjjJ-o ‘/’j(guvgv)‘l’k(l),ge)"{dp
gv

where j:w)wj(gu,gv)wk(p,ge)i:;dp is integrated symbolically.

The displacement part is the same as Eq. (x3). the numerical part being,
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[ [wwn], [v,@31,¢.0- 9,0, P.0) a0
=ﬁ%W(gu)g.V’k(gu’8V)|Jp(8u,gv)|W(gV)gwj(gq)Twlfg(gq)|W(gq) (44)
—8%?@;@%wk(gu,gv)lfp(gu,gv>|w<gv)§v‘r,-(gq)fkk,-,-|ig<gq>|w(gq)
The analytical part is
[ fviwvavauf} [y 0.0 pdpde

1 8, p rL(6) -
= W‘[“Ll J:_L !I,J(u,V) ‘I’k(P,e)Tu,”Pdpdv dadv
(45)

= 8_71::2 Y wigu) If » (gu)lz w(g8) lj o(8 9)| X

L(B) A
Swign [ T, (eu eV, (p.80) pdp
8y

with J: (a)f&ﬁWj(gu’gv)Wk(page) pdp integrated using symbolic computations.
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